If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48z^2+48z+9=0
a = 48; b = 48; c = +9;
Δ = b2-4ac
Δ = 482-4·48·9
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-24}{2*48}=\frac{-72}{96} =-3/4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+24}{2*48}=\frac{-24}{96} =-1/4 $
| -10(4x-7)+32x=38 | | x-1/6-x/2=1/4-x | | 15x+6-8x=62 | | 3=x+28/6 | | 14x-8x=26 | | 80+51+x=180 | | 94+6y=13 | | 77+43+x=180 | | 78+62+x=180 | | 2.5x+10+x=45 | | 92+45+x=180 | | 16-3p=2/3p+3 | | X^2+(72/x)^2=144 | | X2-6x+20=x | | 8x+20x-5=7(4x+5) | | 6x+4x-8=2(5x+2) | | 5/8@+6=3/4a | | 3/2c23=38 | | 5/7-x=1/4 | | 2(w-3)=w+7-3(-5w-1) | | x/2-1/2-x/4-x/2=2-x | | 1/2-x=1/10 | | 11=2u+3 | | -3(-6v+8)-5v=4(v-3)-6 | | 3.4k+(0.63−0.81k)÷0.9=5.7 | | 3x+2x+40+x=210 | | 3x+37=100 | | 3x+2x+40=210 | | -3(w+9)=6w-18 | | 8n=9n+8 | | 6x-39=-9(x+1) | | -5(v-9)=2v+3 |